1,796 research outputs found

    CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis

    Get PDF
    Macrophages abundantly found in the tumor microenvironment enhance malignancy(1). At metastatic sites a distinct population of metastasis associated macrophages (MAMs) promote tumor cell extravasation, seeding and persistent growth(2). Our study has defined the origin of these macrophages by showing Gr1+ inflammatory monocytes (IMs) are preferentially recruited to pulmonary metastases but not primary mammary tumors, a process also found for human IMs in pulmonary metastases of human breast cancer cells. The recruitment of these CCR2 (receptor for chemokine CCL2) expressing IMs and subsequently MAMs and their interaction with metastasizing tumor cells is dependent on tumor and stromal synthesized CCL2 (FigS1). Inhibition of CCL2/CCR2 signaling using anti-CCL2 antibodies blocks IM recruitment and inhibits metastasis in vivo and prolongs the survival of tumor-bearing mice. Depletion of tumor cell-derived CCL2 also inhibits metastatic seeding. IMs promote tumor cell extravasation in a process that requires monocyte-derived VEGF. CCL2 expression and macrophage infiltration are correlated with poor prognosis and metastatic disease in human breast cancer (Fig S2)(3-6). Our data provides the mechanistic link between these two clinical associations and indicates new therapeutic targets for treating metastatic breast disease

    Bacterial Colony Counts During Vaginal Surgery

    Get PDF
    Objective: To describe the bacterial types and colony counts present before and during vaginal surgery. Methods: A descriptive study was undertaken of patients undergoing vaginal hysterectomy with or without reconstructive pelvic surgery. Aerobic and anaerobic bacterial cultures were obtained immediately before and throughout the surgical cases at preselected time intervals. Standard antimicrobial prophylaxis was administered in all cases. Mean total colony counts and mean anaerobic colony counts were determined by adding all colonies regardless of bacteria type. ‘Contamination’ was defined as ≥ 5000 colony-forming units/ml. Results: A total of 31 patients aged 26 to 82 years (mean age ± SD, 51 ± 15) were included. The highest total and anaerobic colony counts were found at the first intraoperative time interval. On the first set of cultures (30 minutes after the surgical scrub), 52% (16/31) of the surgical fields were contaminated, and at 90 minutes, 41% (12/29) were contaminated. A negligible number of subsequent cultures were contaminated. Conclusions: Any future interventions designed to minimize bacterial colony counts should focus on the first 30 to 90 minutes of surgery

    Cancer-Associated Fibroblasts Neutralize the Anti-tumor Effect of CSF1 Receptor Blockade by Inducing PMN-MDSC Infiltration of Tumors.

    Get PDF
    Tumor-associated macrophages (TAM) contribute to all aspects of tumor progression. Use of CSF1R inhibitors to target TAM is therapeutically appealing, but has had very limited anti-tumor effects. Here, we have identified the mechanism that limited the effect of CSF1R targeted therapy. We demonstrated that carcinoma-associated fibroblasts (CAF) are major sources of chemokines that recruit granulocytes to tumors. CSF1 produced by tumor cells caused HDAC2-mediated downregulation of granulocyte-specific chemokine expression in CAF, which limited migration of these cells to tumors. Treatment with CSF1R inhibitors disrupted this crosstalk and triggered a profound increase in granulocyte recruitment to tumors. Combining CSF1R inhibitor with a CXCR2 antagonist blocked granulocyte infiltration of tumors and showed strong anti-tumor effects

    Metabolic control analysis is helpful for informed genetic manipulation of oilseed rape (Brassica napus) to increase seed oil content

    Get PDF
    Top–down control analysis (TDCA) is a useful tool for quantifying constraints on metabolic pathways that might be overcome by biotechnological approaches. Previous studies on lipid accumulation in oilseed rape have suggested that diacylglycerol acyltransferase (DGAT), which catalyses the final step in seed oil biosynthesis, might be an effective target for enhancing seed oil content. Here, increased seed oil content, increased DGAT activity, and reduced substrate:product ratio are demonstrated, as well as reduced flux control by complex lipid assembly, as determined by TDCA in Brassica napus (canola) lines which overexpress the gene encoding type-1 DGAT. Lines overexpressing DGAT1 also exhibited considerably enhanced seed oil content under drought conditions. These results support the use of TDCA in guiding the rational selection of molecular targets for oilseed modification. The most effective lines had a seed oil increase of 14%. Moreover, overexpression of DGAT1 under drought conditions reduced this environmental penalty on seed oil content

    Assessment of anti-inflammatory tumor treatment efficacy by longitudinal monitoring employing sonographic micro morphology in a preclinical mouse model

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>With the development of increasingly sophisticated three-dimensional volumetric imaging methods, tumor volume can serve as a robust and reproducible measurement of drug efficacy. Since the use of molecularly targeted agents in the clinic will almost certainly involve combinations with other therapeutic modalities, the use of volumetric determination can help to identify a dosing schedule of sequential combinations of cytostatic drugs resulting in long term control of tumor growth with minimal toxicity. The aim of this study is to assess high resolution sonography imaging for the in vivo monitoring of efficacy of Infliximab in pancreatic tumor.</p> <p>Methods</p> <p>In the first experiment, primary orthotopic pancreatic tumor growth was measured with Infliximab treatment. In the second experiment, orthotopic tumors were resected ten days after inoculation of tumor cells and tumor recurrence was measured following Infliximab treatment. Tumor progression was evaluated using 3D high resolution sonography.</p> <p>Results</p> <p>Sonography measurement of tumor volume in vivo showed inhibitory effect of Infliximab on primary tumor growth in both non-resected and resected models. Measurement of the dynamics of tumor growth by sonography revealed that in the primary tumor Infliximab is effective against established tumors while in the resection model, Infliximab is more effective at an early stage following tumor resection. Infliximab treatment is also effective in inhibiting tumor growth growth as a result of tumor cell contamination of the surgical field.</p> <p>Conclusions</p> <p>Clinical application of Infliximab is feasible in both the neoadjuvant and adjuvant setting. Infliximab is also effective in slowing the growth of tumor growth under the peritoneum and may have application in treating peritoneal carcinomatosis. Finally the study demonstrates that high resolution sonography is a sensitive imaging modality for the measurement of pancreatic tumor growth.</p

    Regional Extreme Monthly Precipitation Simulated by NARCCAP RCMs

    Get PDF
    This paper analyzes the ability of the North American Regional Climate Change Assessment Program (NARCCAP) ensemble of regional climate models to simulate extreme monthly precipitation and its supporting circulation for regions of North America, comparing 18 years of simulations driven by the National Centers for Environmental Prediction (NCEP)–Department of Energy (DOE) reanalysis with observations. The analysis focuses on the wettest 10% of months during the cold half of the year (October–March), when it is assumed that resolved synoptic circulation governs precipitation. For a coastal California region where the precipitation is largely topographic, the models individually and collectively replicate well the monthly frequency of extremes, the amount of extreme precipitation, and the 500-hPa circulation anomaly associated with the extremes. The models also replicate very well the statistics of the interannual variability of occurrences of extremes. For an interior region containing the upper Mississippi River basin, where precipitation is more dependent on internally generated storms, the models agree with observations in both monthly frequency and magnitude, although not as closely as for coastal California. In addition, simulated circulation anomalies for extreme months are similar to those in observations. Each region has important seasonally varying precipitation processes that govern the occurrence of extremes in the observations, and the models appear to replicate well those variations

    Interconnected Microphysiological Systems for Quantitative Biology and Pharmacology Studies

    Get PDF
    Microphysiological systems (MPSs) are in vitro models that capture facets of in vivo organ function through use of specialized culture microenvironments, including 3D matrices and microperfusion. Here, we report an approach to co-culture multiple different MPSs linked together physiologically on re-useable, open-system microfluidic platforms that are compatible with the quantitative study of a range of compounds, including lipophilic drugs. We describe three different platform designs - "4-way", "7-way", and "10-way" - each accommodating a mixing chamber and up to 4, 7, or 10 MPSs. Platforms accommodate multiple different MPS flow configurations, each with internal re-circulation to enhance molecular exchange, and feature on-board pneumatically-driven pumps with independently programmable flow rates to provide precise control over both intra- and inter-MPS flow partitioning and drug distribution. We first developed a 4-MPS system, showing accurate prediction of secreted liver protein distribution and 2-week maintenance of phenotypic markers. We then developed 7-MPS and 10-MPS platforms, demonstrating reliable, robust operation and maintenance of MPS phenotypic function for 3 weeks (7-way) and 4 weeks (10-way) of continuous interaction, as well as PK analysis of diclofenac metabolism. This study illustrates several generalizable design and operational principles for implementing multi-MPS "physiome-on-a-chip" approaches in drug discovery.United States. Army Research Office (Grant W911NF-12-2-0039

    Sacrocolpopexy without concomitant posterior repair improves posterior compartment defects

    Get PDF
    The aim of this study is to determine posterior compartment topography 1-year after sacrocolpopexy (SC). Women who had SC without concomitant anterior or posterior repairs for symptomatic pelvic organ prolapse (POP) were included. Vaginal topography was assessed at baseline and 1-year postoperatively using POP quantification (POPQ). At baseline, 24% had stage IV POP, 68% stage III, and 8% stage II. One year after surgery, 75% had stage 0/I POP, 24% stage II, and 1% stage III. 112 (75%) were objectively cured (stage 0 or I POP). Anterior compartment was the most common site of POP persistence or recurrence (Ba ≥ stage II in 23 women) followed by posterior compartment (Bp ≥ stage II in 12 women) and apex (C ≥ stage II in 2 women). In 1-year follow-up, SC without concomitant posterior repair restores posterior vaginal topography in the majority of women with undergoing SC

    Phosphorylation of AMPA Receptors Is Required for Sensory Deprivation-Induced Homeostatic Synaptic Plasticity

    Get PDF
    Sensory experience, and the lack thereof, can alter the function of excitatory synapses in the primary sensory cortices. Recent evidence suggests that changes in sensory experience can regulate the synaptic level of Ca2+-permeable AMPA receptors (CP-AMPARs). However, the molecular mechanisms underlying such a process have not been determined. We found that binocular visual deprivation, which is a well-established in vivo model to produce multiplicative synaptic scaling in visual cortex of juvenile rodents, is accompanied by an increase in the phosphorylation of AMPAR GluR1 (or GluA1) subunit at the serine 845 (S845) site and the appearance of CP-AMPARs at synapses. To address the role of GluR1-S845 in visual deprivation-induced homeostatic synaptic plasticity, we used mice lacking key phosphorylation sites on the GluR1 subunit. We found that mice specifically lacking the GluR1-S845 site (GluR1-S845A mutants), which is a substrate of cAMP-dependent kinase (PKA), show abnormal basal excitatory synaptic transmission and lack visual deprivation-induced homeostatic synaptic plasticity. We also found evidence that increasing GluR1-S845 phosphorylation alone is not sufficient to produce normal multiplicative synaptic scaling. Our study provides concrete evidence that a GluR1 dependent mechanism, especially S845 phosphorylation, is a necessary pre-requisite step for in vivo homeostatic synaptic plasticity
    corecore